IDR(s) for linear equations with multiple right-hand sides
نویسندگان
چکیده
for x, where A is a given n × n matrix, and b a given n-vector. We have many opportunities to solve linear equations with the same coefficient matrix and different right-hand sides (RHSs). Therefore, block Krylov subspace methods such as the block Bi-CG (Bl-BCG), block Bi-CGSTAB (Bl-BiCGSTAB) [2], block GMRES (Bl-GMRES) and block QMR (Bl-QMR) methods have been developed for solving block linear systems AX = B (2)
منابع مشابه
New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملGlobal least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$
In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...
متن کاملGlobal conjugate gradient method for solving large general Sylvester matrix equation
In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$ is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...
متن کاملA Minimum Residual Interpolation Method for Linear Equations with Multiple Right Hand Sides
An efficient method for solution of systems of linear equations with many right hand sides is developed. The right hand sides are assumed to depend smoothly on a parameter. The equations are solved by an iterative method and a linear least squares approximation is used as initial guess. The work spent on the iterations is bounded independently of the number of right hand sides. The method is ap...
متن کاملDeflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides
A deflated restarted Lanczos algorithm is given for both solving symmetric linear equations and computing eigenvalues and eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Meanwhile, the deflating from the presence of the eigenvectors allows the linear equations to generally have good convergence in spite of the restarting. Some reorthogonalization is ne...
متن کامل